8 resultados para 1P

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idiopathic inflammatory bowel diseases, Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, frequently disabling diseases of the intestines. Segregation analyses, twin concordance, and ethnic differences in familial risks have established that CD and UC are complex, non-Mendelian, related genetic disorders. We performed a genome-wide screen using 377 autosomal markers, on 297 CD, UC, or mixed relative pairs from 174 families, 37% Ashkenazim. We observed evidence for linkage at 3q for all families (multipoint logarithm of the odds score (MLod) = 2.29, P = 5.7 × 10−4), with greatest significance for non-Ashkenazim Caucasians (MLod = 3.39, P = 3.92 × 10−5), and at chromosome 1p (MLod = 2.65, P = 2.4 × 10−4) for all families. In a limited subset of mixed families (containing one member with CD and another with UC), evidence for linkage was observed on chromosome 4q (MLod = 2.76, P = 1.9 × 10−4), especially among Ashkenazim. There was confirmatory evidence for a CD locus, overlapping IBD1, in the pericentromeric region of chromosome 16 (MLod = 1.69, P = 2.6 × 10−3), particularly among Ashkenazim (MLod = 1.51, P = 7.8 × 10−3); however, positive MLod scores were observed over a very broad region of chromosome 16. Furthermore, evidence for epistasis between IBD1 and chromosome 1p was observed. Thirteen additional loci demonstrated nominal (MLod > 1.0, P < 0.016) evidence for linkage. This screen provides strong evidence that there are several major susceptibility loci contributing to the genetic risk for CD and UC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid mice carrying oncogenic transgenes afford powerful systems for investigating loss of heterozygosity (LOH) in tumors. Here, we apply this approach to a neoplasm of key importance in human medicine: mammary carcinoma. We performed a whole genome search for LOH using the mouse mammary tumor virus/v-Ha-ras mammary carcinoma model in female (FVB/N × Mus musculus castaneus)F1 mice. Mammary tumors developed as expected, as well as a few tumors of a second type (uterine leiomyosarcoma) not previously associated with this transgene. Genotyping of 94 anatomically independent tumors revealed high-frequency LOH (≈38%) for markers on chromosome 4. A marked allelic bias was observed, with M. musculus castaneus alleles almost exclusively being lost. No evidence of genomic imprinting effects was noted. These data point to the presence of a tumor suppressor gene(s) on mouse chromosome 4 involved in mammary carcinogenesis induced by mutant H-ras expression, and for which a significant functional difference may exist between the M. musculus castaneus and FVB/N alleles. Provisional subchromosomal localization of this gene, designated Loh-3, can be made to a distal segment having syntenic correspondence to human chromosome 1p; LOH in this latter region is observed in several human malignancies, including breast cancers. Evidence was also obtained for a possible second locus associated with LOH with less marked allele bias on proximal chromosome 4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rer1p, a Golgi membrane protein, is required for the correct localization of an endoplasmic reticulum (ER) membrane protein, Sec12p, by a retrieval mechanism from the cis-Golgi to the ER. To test whether or not the role of Rer1p is common to multiple ER membrane proteins, we examined the localization of two other ER membrane proteins, Sec71p and Sec63p, in the wild-type and rer1 mutant yeast cells, using their fusions with an α-mating factor precursor (Mfα1p). Although Sec71p and Sec63p have completely different topology from Sec12p, their Mfα1p fusion proteins were also mislocalized to the trans-Golgi in the rer1 mutant. Overexpression of these fusions caused their mislocalization to the trans-Golgi even in the wild-type cells, and this mislocalization was partially suppressed by the co-overexpression of Rer1p. Either Sec71p or an artificial chimeric protein whose ER localization depends on Rer1p gave a competitive effect on the localization of the Mfα1-Sec71p fusion, which was abolished in rer1. Thus, Rer1p appears to be one of the common limiting components in the retrieval machinery for ER membrane proteins. The results also suggest that Sec71p and Sec63p depend on ER-Golgi recycling, at least partly, for ER localization. We also examined the effect of a mutation in α-COP, a subunit of yeast coatomer, on the localization of these ER membrane proteins. The Mfα1p fusions of Sec12p, Sec71p, and Sec63p were all more or less mislocalized in ret1–1. These observations imply that the roles of Rer1p and coatomer are much more general than thought before.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nineteen benign [World Health Organization (WHO) grade I; MI], 21 atypical (WHO grade II; MII), and 19 anaplastic (WHO grade III; MIII) sporadic meningiomas were screened for chromosomal imbalances by comparative genomic hybridization (CGH). These data were supplemented by molecular genetic analyses of selected chromosomal regions and genes. With increasing malignancy grade, a marked accumulation of genomic aberrations was observed; i.e., the numbers (mean ± SEM) of total alterations detected per tumor were 2.9 ± 0.7 for MI, 9.2 ± 1.2 for MII, and 13.3 ± 1.9 for MIII. The most frequent alteration detected in MI was loss on 22q (58%). In MII, aberrations most commonly identified were losses on 1p (76%), 22q (71%), 14q (43%), 18q (43%), 10 (38%), and 6q (33%), as well as gains on 20q (48%), 12q (43%), 15q (43%), 1q (33%), 9q (33%), and 17q (33%). In MIII, most of these alterations were found at similar frequencies. However, an increase in losses on 6q (53%), 10 (68%), and 14q (63%) was observed. In addition, 32% of MIII demonstrated loss on 9p. Homozygous deletions in the CDKN2A gene at 9p21 were found in 4 of 16 MIII (25%). Highly amplified DNA sequences were mapped to 12q13–q15 by CGH in 1 MII. Southern blot analysis of this tumor revealed amplification of CDK4 and MDM2. By CGH, DNA sequences from 17q were found to be amplified in 1 MII and 8 MIII, involving 17q23 in all cases. Despite the high frequency of chromosomal aberrations in the MII and MIII investigated, none of these tumors showed mutations in exons 5–8 of the TP53 gene. On the basis of the most common aberrations identified in the various malignancy grades, a model for the genomic alterations associated with meningioma progression is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arp2/3 complex is an essential component of the yeast actin cytoskeleton that localizes to cortical actin patches. We have isolated and characterized a temperature-sensitive mutant of Schizosaccharomyces pombe arp2 that displays a defect in cortical actin patch distribution. The arp2+ gene encodes an essential actin-related protein that colocalizes with actin at the cortical actin patch. Sucrose gradient analysis of the Arp2/3 complex in the arp2-1 mutant indicated that the Arp2p and Arc18p subunits are specifically lost from the complex at restrictive temperature. These results are consistent with immunolocalization studies of the mutant that show that Arp2-1p is diffusely localized in the cytoplasm at restrictive temperature. Interestingly, Arp3p remains localized to the cortical actin patch under the same restrictive conditions, leading to the hypothesis that loss of Arp2p from the actin patch affects patch motility but does not severely compromise its architecture. Analysis of the mutant Arp2 protein demonstrated defects in ATP and Arp3p binding, suggesting a possible model for disruption of the complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe dhp1+ gene is an ortholog of the Saccharomyces cerevisiae RAT1 gene, which encodes a nuclear 5′→3′ exoribonuclease, and is essential for cell viability. To clarify the cellular functions of the nuclear 5′→3′ exoribonuclease, we isolated and characterized a temperature-sensitive mutant of dhp1 (dhp1-1 mutant). The dhp1-1 mutant showed nuclear accumulation of poly(A)+ RNA at the restrictive temperature, as was already reported for the rat1 mutant. Interestingly, the dhp1-1 mutant exhibited aberrant chromosome segregation at the restrictive temperature. The dhp1-1 cells frequently contained condensed chromosomes, most of whose sister chromatids failed to separate during mitosis despite normal mitotic spindle elongation. Finally, chromosomes were displaced or unequally segregated. As similar mitotic defects were also observed in Dhp1p-depleted cells, we concluded that dhp1+ is required for proper chromosome segregation as well as for poly(A)+ RNA metabolism in fission yeast. Furthermore, we isolated a multicopy suppressor of the dhp1-1 mutant, referred to as din1+. We found that the gene product of dhp1-1 was unstable at high temperatures, but that reduced levels of Dhp1-1p could be suppressed by overexpressing Din1p at the restrictive temperature. Thus, Din1p may physically interact with Dhp1p and stabilize Dhp1p and/or restore its activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rna1p is the GTPase activating enzyme for Ran/TC4, a Ras-like GTPase necessary for nuclear/cytosolic exchange. Although most wild-type Rna1p is located in the cytosol, we found that the vast majority of the mutant Rna1-1p and, under appropriate physiological conditions, a small portion of the wild-type Rna1p cofractionate with yeast nuclei. Subnuclear fractionation studies show that most of the Rna1p is tightly associated with nuclear components, and that a portion of the active protein can be solubilized by treatments that fail to solubilize inactive Rna1-1p. To learn the precise nuclear locations of the Rna1 proteins, we studied their subcellular distributions in HeLa cells. By indirect immuno-fluorescence we show that wild-type Rna1p has three subcellular locations. The majority of the protein is distributed throughout the cytosol, but a portion of the protein is nucleus-associated, located at both the cytosolic surface and within the nucleoplasm. Mutant Rna1-1p is found at the outer nuclear surface and in the cytosol. We propose that a small pool of the wild-type Rna1p is located in the nuclear interior, supporting the model that the same components of the Ran/TC4 GTPase cycle exist on both sides of the nuclear membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes--DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2--were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH.